394 research outputs found

    Chemical Genetic Inhibition of Mps1 in Stable Human Cell Lines Reveals Novel Aspects of Mps1 Function in Mitosis

    Get PDF
    Proper execution of chromosome segregation relies on tight control of attachment of chromosomes to spindle microtubules. This is monitored by the mitotic checkpoint that allows chromosome segregation only when all chromosomes are stably attached. Proper functioning of the attachment and checkpoint processes is thus important to prevent chromosomal instability. Both processes rely on the mitotic kinase Mps1.We present here two cell lines in which endogenous Mps1 has been stably replaced with a mutant kinase (Mps1-as) that is specifically inhibited by bulky PP1 analogs. Mps1 inhibition in these cell lines is highly penetrant and reversible. Timed inhibition during bipolar spindle assembly shows that Mps1 is critical for attachment error-correction and confirms its role in Aurora B regulation. We furthermore show that Mps1 has multiple controls over mitotic checkpoint activity. Mps1 inhibition precludes Mad1 localization to unattached kinetochores but also accelerates mitosis. This acceleration correlates with absence of detectable mitotic checkpoint complex after Mps1 inhibition. Finally, we show that short-term inhibition of Mps1 catalytic activity is sufficient to kill cells.Mps1 is involved in the regulation of multiple key processes that ensure correct chromosome segregation and is a promising target for inhibition in anti-cancer strategies. We report here two cell lines that allow specific and highly penetrant inhibition of Mps1 in a reproducible manner through the use of chemical genetics. Using these cell lines we confirm previously suggested roles for Mps1 activity in mitosis, present evidence for novel functions and examine cell viability after short and prolonged Mps1 inhibition. These cell lines present the best cellular model system to date for investigations into Mps1 biology and the effects of penetrance and duration of Mps1 inhibition on cell viability

    Transient ALT Activation Protects Human Primary Cells From Chromosome Instability Induced by Low Chronic Oxidative Stress

    Get PDF
    Cells are often subjected to the effect of reactive oxygen species (ROS) as a result of both intracellular metabolism and exposure to exogenous factors. ROS-dependent oxidative stress can induce 8-oxodG within the GGG triplet found in the G-rich human telomeric sequence (TTAGGG), making telomeres highly susceptible to ROS-induced oxidative damage. Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes and their dysfunction is believed to affect a wide range of cellular and/or organismal processes. Acute oxidative stress was shown to affect telomere integrity, but how prolonged low level oxidative stress, which may be more physiologically relevant, affects telomeres is still poorly investigated. Here, we explored this issue by chronically exposing human primary fibroblasts to a low dose of hydrogen peroxide. We observed fluctuating changes in telomere length and fluctuations in the rates of chromosome instability phenotypes, such that when telomeres shortened, chromosome instability increased and when telomeres lengthened, chromosome instability decreased. We found that telomere length fluctuation is associated with transient activation of an alternative lengthening of telomere (ALT) pathway, but found no evidence of cell death, impaired proliferation, or cell cycle arrest, suggesting that ALT activation may prevent oxidative damage from reaching levels that threaten cell survival

    Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project

    Get PDF
    The ability to observe the world has seen significant developments in the last few decades, alongside the techniques and methodologies to derive accurate digital replicas of observed environments. Underwater ecosystems present greater challenges and remain largely unexplored, but the need for reliable and up-to-date information motivated the birth of the Interreg Italy–Croatia SUSHI DROP Project (SUstainable fiSHeries wIth DROnes data Processing). The aim of the project is to map ecosystems for sustainable fishing and to achieve this goal a prototype of an Unmanned Underwater Vehicle (UUV), named Blucy, has been designed and developed. Blucy was deployed during project missions for surveying the benthic zone in deep waters of the Adriatic Sea with noninvasive techniques compared to the use of trawl nets. This article describes the strategies followed, the instruments applied and the challenges to be overcome to obtain an accurately georeferenced underwater survey with the goal of creating a marine digital twin

    26S PROTEASOME AND PKA MODULATE MAMMALIAN SPERM CAPACITATION BY CREATING AN INTEGRATED DIALOGUE: A COMPUTATIONAL ANALYSIS

    Get PDF
    Recent experimental evidence suggests the involvement of the 26S proteasome, the main protease active in eukaryotic cells, in the process that leads mammalian sperm to become fully fertile, so-called capacitation. Unfortunately, its role in male gametes signaling is still far from being completely understood. For this reason, here, we realized a computational model as an attempt to rebuild and explore 26S proteasome signaling cascade, aggregating all the molecular data available to date and realizing the Proteasome Interactome Network (PIN). Once obtained the network (i.e., a graph to represent the molecules as nodes and the interactions among them as links), we assessed its topology to infer important biological information. PIN is composed of 157 nodes, 248 links and it is characterized by a scale-free topology, following the Barabasi Albert model. In other words, it possesses a large amount of scarcely linked nodes and a small set of highly linked nodes, the hubs, which act as system controllers. This peculiar topology confers to the network relevant biological features: it is robust against random attacks, easily navigable and controllable and it is possible to infer new information from it. Indeed, the analysis of PIN showed that PKA and 26S proteasome were strongly interconnected and both were active in sperm signaling by influencing the protein phosphorylation pattern and then controlling several key events in sperm capacitation, such as membrane and cytoskeleton remodeling. In conclusion, the network model could explain many biological aspects of sperm physiology that are out of focus looking at the single molecular determinant, overcoming the reductionist approach which did not consider the complexity of molecules and their interactions. This could be helpful to identify potential diagnostic markers and therapeutic strategies concurring in explaining and approaching male infertility

    Emergence of scale-free leadership structure in social recommender systems

    Get PDF
    The study of the organization of social networks is important for understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a "good get richer" mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems

    A time-domain control signal detection technique for OFDM

    Get PDF
    Transmission of system-critical control information plays a key role in efficient management of limited wireless network resources and successful reception of payload data information. This paper uses an orthogonal frequency division multiplexing (OFDM) architecture to investigate the detection performance of a time-domain approach used to detect deterministic control signalling information. It considers a type of control information chosen from a finite set of information, which is known at both transmitting and receiving wireless terminals. Unlike the maximum likelihood (ML) estimation method, which is often used, the time-domain detection technique requires no channel estimation and no pilots as it uses a form of time-domain correlation as the means of detection. Results show that when compared with the ML method, the time-domain approach improves detection performance even in the presence of synchronisation error caused by carrier frequency offset

    N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy.

    Get PDF
    Abstract NPM1 is a multifunctional nucleolar protein implicated in several processes such as ribosome maturation and export, DNA damage response and apoptotic response to stress stimuli. The NPM1 gene is involved in human tumorigenesis and is found mutated in one third of acute myeloid leukemia patients, leading to the aberrant cytoplasmic localization of NPM1. Recent studies indicated that the N6L multivalent pseudopeptide, a synthetic ligand of cell–surface nucleolin, is also able to bind NPM1 with high affinity. N6L inhibits cell growth with different mechanisms and represents a good candidate as a novel anticancer drug for a number of malignancies of different histological origin. In this study we investigated whether N6L treatment could drive antitumor effect in acute myeloid leukemia cell lines. We found that N6L binds NPM1 at the N-terminal domain, co-localizes with cytoplasmic, mutated NPM1, and interferes with its protein-protein associations. N6L toxicity appears to be p53 dependent but interestingly, the leukemic cell line harbouring the mutated form of NPM1 is more resistant to treatment, suggesting that NPM1 cytoplasmic delocalization confers protection from p53 activation. Moreover, we show that N6L sensitizes AML cells to doxorubicin and cytarabine treatment. These studies suggest that N6L may be a promising option in combination therapies for acute myeloid leukemia treatment

    Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart.

    Get PDF
    We investigated whether exercise training could promote angiogenesis and improve blood perfusion and left ventricular (LV) remodelling of the post-myocardial infarction (MI) failing heart. We also explored the contribution of ameliorated beta-adrenergic receptor signalling and function on the overall improvement of cardiac contractility reserve induced by exercise.Adult Wistar male rats were randomly assigned to one of four experimental groups. Sham-operated and post-MI heart failure (HF) rats were housed under sedentary conditions or assigned to 10-weeks of a treadmill exercise protocol. At 4 weeks after MI, sedentary HF rats showed LV eccentric hypertrophy, marked increase of LV diameters associated with severely impaired fractional shortening (14 +/- 5\%), increased LV end diastolic pressure (20.9 +/- 2.6 mmHg), and pulmonary congestion. In addition, cardiac contractile responses to adrenergic stimulation were significantly blunted. In trained HF rats, exercise was able to (i) reactivate the cardiac vascular endothelial growth factor pathway with a concurrent enhancement of myocardial angiogenesis, (ii) significantly increase myocardial perfusion and coronary reserve, (iii) reduce cardiac diameters, and (iv) improve LV contractility in response to adrenergic stimulation. This latter finding was also associated with a significant improvement of cardiac beta-adrenergic receptor downregulation and desensitization.Our data indicate that exercise favourably affects angiogenesis and improves LV remodelling and contractility reserve in a rat model of severe chronic HF

    Heterogeneity, quality, and reputation in an adaptive recommendation model

    Get PDF
    Recommender systems help people cope with the problem of information overload. A recently proposed adaptive news recommender model [Medo et al., 2009] is based on epidemic-like spreading of news in a social network. By means of agent-based simulations we study a "good get richer" feature of the model and determine which attributes are necessary for a user to play a leading role in the network. We further investigate the filtering efficiency of the model as well as its robustness against malicious and spamming behaviour. We show that incorporating user reputation in the recommendation process can substantially improve the outcome
    • …
    corecore